US009471513B2

a2 United States Patent

Boivie

US 9,471,513 B2
*QOct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

CACHE STRUCTURE FOR A COMPUTER
SYSTEM PROVIDING SUPPORT FOR
SECURE OBJECTS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventor: Richard Harold Boivie, Monroe, CT
(US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 15/062,676

Filed: Mar. 7, 2016

Prior Publication Data

US 2016/0188494 Al Jun. 30, 2016

Related U.S. Application Data

Continuation of application No. 12/878,696, filed on
Sep. 9, 2010, now Pat. No. 9,298,894, which is a
continuation-in-part of application No. 12/492,738,
filed on Jun. 26, 2009, now Pat. No. 8,819,446.

Int. CL.

GO6F 11/30 (2006.01)

GO6F 12/14 (2006.01)

GO6F 12/08 (2016.01)

GO6F 21/72 (2013.01)

GO6F 21/12 (2013.01)

U.S. CL

CPC ... GO6F 12/1408 (2013.01); GOGF 12/0802

(2013.01); GOGF 21/125 (2013.01); GO6F

501~

502

SECURE OBJECT
EXECUTING?

READ DATA FROM
EXT MEM & DECRYPT
USING KEY OF CURR-
// EXE §.0. & PLACE
507- RESULTING UNENCRYI
DATA IN CAGHE LINE

NO

508
Tp~—| LOAD 0BJ ID OF

CURR-EXE 5.0.
504 AS OWNER OF
\ GAGHE LINE

RETRIEVE DATA
FROM MEMORYAND
PLAGE IN CACHE LINE

I

LOAD"0” AS
OWNER LABEL
IN CACHE LINE

1

CPU REQUESTS DATA

S DATA
ALREADY IN
CACHE?,
YES

21/72 (2013.01); GO6F 2212/1052 (2013.01);
GOG6F 2212/6042 (2013.01); HO4L 2209/12
(2013.01)
(58) Field of Classification Search

HO4L 2209/12; GOG6F 12/0802; GOGF
2212/1052; GO6F 2212/6042; GOG6F 21/125;
GOG6F 21/72

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,222,139 A 6/1993 Takaragi et al.
5,481,613 A 1/1996 Ford et al.
(Continued)
FOREIGN PATENT DOCUMENTS
CN 1309351 A 8/2001
Jp H 07287514 A 10/1995
(Continued)

OTHER PUBLICATIONS

European Search Report dated Mar. 4, 2016.
(Continued)

Primary Examiner — Krista Zele

Assistant Fxaminer — James Forman

(74) Attorney, Agent, or Firm — Jeff LaBaw, Esq.;
McGinn IP Law Group, PLLC

(57) ABSTRACT

A method that protects a confidentiality and an integrity of
information in a secure object from other software on the
system, said secure object comprising information that is
cryptographically protected from the other software on the
system, said method includes decrypting and integrity-
checking information in the secure object as said informa-
tion is brought into a cache from external memory.

20 Claims, 7 Drawing Sheets

YES

IF OBJECT ID OF CACHE
LINE # 0, COMPARE OBJECT ID
VALUE WITH WITH VALUE IN
OBJECT IDREGISTER IN CPU

READ DATA FROM EXT. MEM. 7
DECRYPT USING KEY OF CURR-
EXE. 8.0. & PLACE RESULTING
UNENCRYP. DATA IN CACHE LINE
LOAD OBJ. ID OF CURR-EXE 5.0
AS OWNER LABEL

]

505 PERMIT ACCESS OF DATA IN
CACHE LINE FOR CPU REQUEST

508

US 9,471,513 B2
Page 2

(56)

5,615,263
5,748,782
5,845,281
6,185,685
6,397,331
6,523,118

6,704,871
6,708,273
6,751,709
6,968,420
7,043,616
7,055,040
7,136,488
7,167,956
7,249,225
7,260,726
7,290,288
7,483,930
7,516,331
7,747,877
7,865,733
7,933,413
8,041,947
8,055,910
8,086,871
8,108,641
8,381,288
8,392,725
8,464,011
8,479,286
8,572,400
8,738,932
2001/0010722
2001/0014157
2001/0050990
2002/0064283
2002/0172368
2004/0039926
2004/0123127
2004/0139346
2004/0181303
2005/0038998
2005/0044390
2005/0076226

2005/0105738
2005/0166069

2005/0177742
2006/0106801
2006/0156418
2006/0242611
2007/0006294
2007/0047735
2007/0101124
2007/0133795
2008/0072068
2008/0109903
2008/0155273
2008/0205651
2008/0222420
2008/0270806
2008/0282093
2008/0288786
2008/0301441
2009/0006796
2009/0006864
2009/0217385
2009/0259857
2009/0300366
2009/0319782
2010/0031061
2010/0119068

U.S. PATENT DOCUMENTS

A

A

A
Bl
Bl
BL*

Bl
Bl
B2
Bl
Bl
B2
B2
Bl
Bl
Bl
B2
Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al*

Al*

References Cited

3/1997
5/1998
12/1998
2/2001
5/2002
2/2003

3/2004
3/2004
6/2004
11/2005
5/2006
5/2006
11/2006
1/2007
7/2007
8/2007
10/2007
1/2009
4/2009
6/2010
1/2011
4/2011
10/2011
112011
12/2011
1/2012
2/2013
3/2013
6/2013
7/2013
10/2013
5/2014
8/2001
8/2001
12/2001
5/2002
11/2002
2/2004
6/2004
7/2004
9/2004
2/2005
2/2005
4/2005

5/2005
7/2005

8/2005
5/2006
7/2006
10/2006
1/2007
3/2007
5/2007
6/2007
3/2008
5/2008
6/2008
8/2008
9/2008
10/2008
11/2008
11/2008
12/2008
1/2009
1/2009
8/2009
10/2009
12/2009
12/2009
2/2010
5/2010

Takahashi
Ferreira et al.
Benson et al.
Morgan et al.
Ober et al.
Buer

Kaplan et al.
Ober et al.
Seidl et al.
Giles et al.
McGrath
Klemba et al.

Hashimoto et al.

Wright et al.
Seidl et al.
Doe et al.
Gregg et al.
Wright et al.
Jin et al.

Jin et al.

Goto et al.
Steeves et al.
O’Brien et al.
Kocher et al.
Mclntosh et al.
Goss et al.
Sahita et al.
Mclntosh et al.
Krig

Dalcher et al.
Lin et al.

Lee et al.
Enari

Hashimoto et al.

Sudia
Parenty
Peterka
Lambert
Teicher et al.
Watt
Walmsley
Ueno
Trostle
Boivie

Hashimoto
Hashimoto

Benson et al.
Cox et al.
Polozoff
Drake
Hunter

Celli et al.
Pitts

Kahn et al.
Wang et al.
Werner et al.
Conti

Goto et al.
Serret-Avila
Nakamura
Hatakeyama
Fiske
Calman et al.
Chang et al.

Hashimoto et al.

Teow
Gehrmann
Gueller et al.
Lee

Watanabe et al.
Harris

GOG6F 21/85
380/28

GOG6F 21/575
713/187
GO6F 21/72
380/277
GO6F 21/10
713/194

2010/0153746 Al
2010/0161904 Al

6/2010
6/2010

Takeuchi et al.
Cypher et al.

2010/0262824 Al 10/2010 Keshavachar et al.

2010/0281273 Al 11/2010 Lee et al.

2011/0064217 A1* 3/2011 Fry .covvvevcncnnnn GO6F 21/78
380/46

FOREIGN PATENT DOCUMENTS

JP 2001-230770 A 8/2001
JP 2001-318787 A 11/2001
JP 2002-232417 A 8/2002
JP 2006-018528 A 1/2006
JP 2006-209703 A 8/2006
JP 2006-227777 A 8/2006
JP 2006-309766 A 11/2006
JP 2007-514994 A 6/2007
JP 2007-233426 A 9/2007
JP 2008-210225 A 9/2008
™ 200822068 A 5/2008
™ 200841682 A 10/2008
WO WO 98/54633 Al 12/1998
WO WO 2005-096120 Al 10/2005
WO WO 2008/003833 Al 1/2008

OTHER PUBLICATIONS

Haifeng, et al. “Memory Confidentiality and Integrity Protection
Method Based on Variable Length Counter”, 2012, IEEE, p. 290-
294.

Frincke, “Developing Secure Objects”; Google, 1995-1996.
Somogyi, et al., “NbIDL: Secure, Object-Oriented, Client-Server
Middleware”, Google, 1998.

SAP Functions in Detail; “Crystal Reports Server—A Functional
Overview”, Google, 2008.

PCT Notification Concerning Transmittal of International Prelimi-
nary Report on Patentability dated Jan. 12, 2012 (PCT Application
No. PCT/US2010/001811).

Henry Levy, Capability-Based Computer Systems, Published by
Digital Press 1984. http://www.cs.washington.edwhomes/levy/
capabook.

Theodore A. Linden, Operating System Structure to Support Secu-
rity and Reliable Software, Institute for Computer Sciences and
Technology, National Bureau of Standards, Washington, DC 20234
http://delivery.acm.org/10.1145/360000/356682/P409 linden.pdf—
Abstract Only ACM Computing Survey (CSUR), vol. 8, Issue 4,
Dec. 1976.

Canetti, et al., “A Two Layers Approach for Securing an Object
Store Network”, Proceedings of the First International IEEE Secu-
rity in Storage Work-Shop (2002) (SISW’02), 1-14.

Wang, et al.,, “Keep Passwords Away from Memory: Password
Caching and Verification Using TPM”, 22" International Confer-
ence on Advanced Information Networking and Applications, IEEE,
755-762, DOIL: 10.1109/AINA, 2008.109.

Catrein, et al. “Private Domains in Networks of Information”, IEEE
International Conference Communications (ICC) Work-Shops,
2009.1-5.

PCT Notification of Transmittal of the International Search Report
and the Written Opinion of the International Searching Authority, or
the Declaration dated Oct. 1, 2010.

Williams, et al., “CPU Support for Secure Executables”, The 4"
International Conference on Trust and Trustworthy Computing, Jun.
22-24, 2011, Pittsburgh, PA.

Williams, et al., “CPU Support for Secure Executables” Stony
Brook University, Power Point Presentation at the 4” International
Conference on Trust and Trustworthy Computing, Jun. 22-24, 2011,
Pittsburgh, PA.

United States Office Action dated Aug. 14, 2013 in U.S. Appl. No.
13/226,079.

United States Office Action dated Aug. 14, 2013 in U.S. Appl. No.
12/492,738.

United States Office Action dated Oct. 8, 2014 in U.S. Appl. No.
13/226,079.

US 9,471,513 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

United States Notice of Allowance dated Jul. 7, 2014 in U.S. Appl.
No. 13/033,455.

United States Notice of Allowance dated May 5, 2014 in U.S. Appl.
No. 12/492,738.

Suh, et al., “Efficient Memory Integrity Verification and Encryption
for Secure Processors”, 36" International Symposium on
Microarchitecture, 2003 IEEE, pp. 1-12.

Yang, et al., “Fast Secure Processor for Inhibiting Software Piracy
and Tampering”, 36" International Symposium to
Microarchitecuture, 2003 IEEE, pp. 1-10.

United States Office Action dated Feb. 12, 2014 in U.S. Appl. No.
12/492,738.

United States Office Action dated Mar. 19, 2014 in U.S. Appl. No.
13/226,079.

United States Office Action dated Oct. 4, 2013 in U.S. Appl. No.
12/878,696.

United States Office Action dated Mar. 13, 2015 in U.S. Appl. No.
13/226,079.

Haifend, “Memory Confidentiality and Integrity Protection Method
Based on Variable Length Counter”, Dec. 1, 2014, Journal of
Algorithms & Computational Technology, pp. 421-439.

United States Office Action dated Nov. 23, 2015, in U.S. Appl. No.
14/454,075.

United States Office Action dated Jun. 26, 2015, in U.S. Appl. No.
12/878,696.

United States Office Action dated Nov. 9, 2012 in U.S. Appl. No.
13/033,367.

United States Office Action dated Mar. 26, 2012, in U.S. Appl. No.
12/492,738.

United States Office Action dated Dec. 3, 2014, in U.S. Appl. No.
14/454,075.

United States Office Action dated Dec. 3, 2014, in U.S. Appl. No.
14/017,555.

United States Office Action dated May 30, 2014, in co-pending U.S.
Appl. No. 14/017,555.

United States Notice of Allowance dated Mar. 26, 2015, in U.S.
Appl. No. 14/017,555.

United States Notice of Allowance dated Jul. 23, 2013 in U.S. Appl.
No. 13/033,367.

Combined Search and Examination Report dated Dec. 20, 2012.
United States Office Action dated Jun. 5, 2013 in U.S. Appl. No.
12/492,738.

United States Office Action dated Mar. 25, 2013 in U.S. Appl. No.
13/033,367.

United States Office Action dated Nov. 20, 2012 in U.S. Appl. No.
13/033,455.

United States Office Action dated May 24, 2016, in U.S. Appl. No.
14/745,851.

* cited by examiner

U.S. Patent

Oct. 18,2016 Sheet 1 of 7 US 9,471,513 B2
100
101 103 1})6
\\ \\\ 105
MICROPROCESSOR| " L /
CACHE /
CPU CRYPTO 12 \
- ENGINE CACHE EXTERNAL
— > — MEMORY
PROTECTED N KV
AREA
/|l
/ /
108 107 / /
104

FIGURE 1

U.S. Patent Oct. 18, 2016 Sheet 2 of 7 US 9,471,513 B2

201 203

202 —

| (OWNERS) ! (DATA)

()]
(e’

FIGURE 2

U.S. Patent Oct. 18, 2016 Sheet 3 of 7 US 9,471,513 B2

300
301 303 ;96
\\ \\\ 105
MICROPROCESSOR|* L1 /’
CACHE /
CPU CRYPTO 19 \
- > — | MEMORY
QObject-ID
304// Register
PROTECTED) e
AREA
/ /
/ /
\108 1 / /
o 104

FIGURE 3

U.S. Patent Oct. 18, 2016 Sheet 4 of 7 US 9,471,513 B2
400
405 106
401 403 / /
\ \
\ n] 105
MICROPROCESSOR, * L 12 /
CACHE CACHE
CPU CRYPTO \
ol ENGINE EXTERNAL
— » MEMORY
Object-D
404//Pf;e(§i;tEe;TED
\REA KEYS
/
/
108

FIGURE 4

U.S. Patent Oct. 18, 2016 Sheet 5 of 7
501 — | CPUREQUESTS DATA 500
502
NO DATA YES
ALREADY IN
503 CACHE? /509

SECURE OBJECT
EXECUTING?

READ DATA FROM
EXT MEM & DECRYPT
USING KEY OF CURR-
EXE 8.0. & PLACE
RESULTING UNENCRYH
DATA IN CACHE LINE

IF OBJECT ID OF CACHE
LINE # 0, COMPARE OBJECT ID
VALUE WITH WITH VALUE IN
OBJECT IDREGISTER IN CPU

'

LOAD OBJ ID OF

CURR-EXE S.0.

AS OWNER OF
CACHE LINE

A 4

RETRIEVE DATA
FROM MEMORYAND
PLACE IN CACHE LINE

v

IN CACHE

LOAD “0” AS
OWNER LABEL

LINE

l ¥

510

SAME
OWNER OR

YES
511

ID =07
NO

INVALIDATE CACHE LINE

512\

READ DATA FROM EXT. MEM. 7

DECRYPT USING KEY OF CURR-

EXE. S.O. & PLACE RESULTING

UNENCRYP. DATA IN CACHE LINH

LOAD OBJ. ID OF CURR-EXE S.O
AS OWNER LABEL

X

4 Y

/

505

PERMIT ACCESS OF DATA IN
CACHE LINE FOR CPU REQUEST

506

FIGURE 5

US 9,471,513 B2

U.S. Patent Oct. 18, 2016 Sheet 6 of 7 US 9,471,513 B2

S
FIG. 6

{‘610 /‘610 /‘614 /‘616 f618 /‘634 600

10 COMMUNICATIONS
CRU| | U\ | RAIEY PO ADAPTER ADAPTER

636

o) e K l [E

o
KEYBOARDL | reprace | |FEADER | DISPLAY 11 pyooyay

ADAPTER SCANNER| | ADAPTER
/‘ 639

PRINTER

Il

62
B g

FIG. §

U.S. Patent Oct. 18, 2016 Sheet 7 of 7 US 9,471,513 B2

105

302/402
\ e
703

, -

304/404 702 \ .

\
/ 701 106

700

FIGURE 7

US 9,471,513 B2

1

CACHE STRUCTURE FOR A COMPUTER
SYSTEM PROVIDING SUPPORT FOR
SECURE OBJECTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present Application is a continuation in part to U.S.
patent application Ser. No. 12/492,738, filed on Jun. 26,
2009, to Richard H. Boivie, entitled “SUPPORT FOR
SECURE OBJECTS IN A COMPUTER SYSTEM”,
assigned to the present assignee, and incorporated herein by
reference.

This Application is a Continuation Application of U.S.
patent application Ser. No. 12/878,696, filed on Sep. 9, 2010.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to protecting code
and data on a computer system from other software on the
system. More specifically, a new object identification label
is provided in each cache line, the label identifying which,
if any, secure object owns the data of that cache line, the data
having been decrypted upon retrieval as an encrypted secure
object from memory and placed in the cache, such that, if the
data is indicated as owned by a secure object, the cache
controller permits an access to that cache line data only by
that secure object. If an access attempt is made by any other
software, the cache line is invalidated and the encrypted
version of the data is retrieved from memory and placed in
that cache line, thereby ensuring that only the owner of the
secure object has access to the secure object’s decrypted
data and/or code in the cache.

2. Description of the Related Art

The above-identified co-pending application introduced
the notion of a ‘secure object’ comprising code and data on
a computer system that is cryptographically protected from
other software on the system, along with an exemplary
computer architecture for supporting these secure objects.

FIG. 1 exemplarily shows such a computer architecture
100 that would implement the method described in this
co-pending application, including microprocessor 101 hav-
ing a CPU 102, L1 cache 103, 1.2 cache 104, interacting with
external memory 105. Data and code in secure objects are
stored in encrypted form in external memory 105 and,
therefore, are inaccessible unless the encryption key is
available for that secure object.

When a secure object executing on CPU 102 retrieves its
encrypted information from external memory 105, the data
and/or code of the retrieved secure object is decrypted in the
crypto engine 106, using keys, temporarily stored in special
crypto registers 107, The crypto engine 106 will again
encrypt the secure object’s data and/or code as it is written
out to the external memory 105 via .2 cache 104. Thus, the
secure object code and data remain decrypted (e.g., “in the
clear”) only while within the CPU 102 and L1 cache 103.

The present application extends the concepts described in
the above-referenced co-pending application by describing a
cache structure that improves the performance of a computer
system providing support for secure objects by adding
components and features into the architecture shown in FIG.
1, as further described below.

SUMMARY OF THE INVENTION

In view of the foregoing, it is an exemplary feature of the
present invention to provide a structure (and method) in
which efficiency using secure objects is further enhanced on
a computer.

10

15

20

25

30

35

40

45

55

60

65

2

In summary, in relation to the method described in the
parent application, the present invention provides a mecha-
nism for protecting secure object data that is stored in an
on-chip CPU cache in unencrypted form from other threads
or processes that are unrelated to the secure object. The
present invention derives in part by the present inventor
noting that, from a performance perspective, it is advanta-
geous to store secure object data in unencrypted form in the
cache so that decryption is not required on each reference to
data in the cache.

The present invention, therefore, further enhances perfor-
mance in processing secure objects by providing a mecha-
nism so that secure object data can be stored securely in
unencrypted form in an on-chip cache in a multiprocessor
chip in which one or more levels of cache memory space can
be shared by more than one processor in the chip or in the
system.

In a first exemplary aspect of the present invention,
described herein is a method of enhancing efficiency in
processing using a secure environment on a computer,
including, for each line of a cache, providing an associated
object identification label field associated with that line of
cache, the object identification label field storing a value that
identifies an owner of data currently stored in that line of
cache.

In a second exemplary aspect of the present invention,
also described herein is an apparatus, including a cache that
includes a plurality of cache lines, each of the cache lines
having an owner field identitfying an owner, if any, of data
stored in that cache line; and a cache controller that controls
an access of the data stored in the cache line as based upon
whether the access has been made by the owner identified in
the owner identification field.

In a third exemplary aspect of the present invention, also
described herein is a cache controller, including a data port
receiving a value identifying an owner of a process or thread
currently being executed by a central processing unit (CPU)
associated with a cache controlled by the cache controller,
the process or thread requesting access to data stored in a
line of the cache; and a mechanism that causes the cache
controller to determine if a value stored in an owner iden-
tification field of the requested line of cache matches the
value received at the input port.

Thus, the present invention enhances the capabilities of
the secure object support described in the parent application
by permitting the secure object to execute safely and with
high performance in a single-threaded CPU environment or
in multi-threaded and multiprocessor computing environ-
ments because secure data can safely remain in cache in its
unencrypted form even if software unrelated to the owner of
the secure data is currently controlling the CPU environment
that includes the cache.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other purposes, aspects and advantages
will be better understood from the following detailed
description of an exemplary embodiment of the invention
with reference to the drawings, in which:

FIG. 1 exemplarily demonstrates a typical computer
architecture appropriate for executing the secure object
mechanism described in the parent application;

FIG. 2 exemplarily demonstrates a cache structure 200
having cache lines 202 using the object-id label 201 of the
present invention;

FIG. 3 demonstrates an exemplary embodiment 300 of the
present invention;

US 9,471,513 B2

3

FIG. 4 demonstrates a variation 400 of the computer
architecture for which the present invention is appropriate;

FIG. 5 demonstrates in flowchart format 500 the method
used by the cache controller in the present invention;

FIG. 6 illustrates an exemplary hardware/information
handling system 600 for incorporating the present invention
therein;

FIG. 7 illustrates an exemplary cache controller 700 that
implements the concepts of the present invention; and

FIG. 8 illustrates exemplary signal bearing media 800
(e.g., storage medium) for storing steps of a program of a
method according to the present invention, as a computer
program product.

EXEMPLARY EMBODIMENTS OF THE
INVENTION

Referring now to the drawings, and more particularly to
FIGS. 1-8, exemplary embodiments of the method and
structures according to the present invention will now be
discussed.

The co-pending patent application identified above
described a computer architecture in which a secure object’s
private information is cryptographically protected from
other software on the system. In this design, a secure
object’s private information is encrypted while in memory
or on disk. A secure object’s private information is “in the
clear” only when it is accessed from inside the secure object
and only while that information is inside the CPU. In this
design, private information is decrypted on the path from
external memory into the CPU and encrypted on the path
from the CPU to external memory, as demonstrated by the
exemplary architecture shown in FIG. 1.

To minimize cryptographic overhead and to maximize
performance, private information in any .1, L2 or L3 caches
that are on the CPU chip could be “in the clear” and the
encryption and decryption done between the external
memory and the on-chip caches. But if private information
will be in the clear in the on-chip caches, it is necessary to
provide mechanisms that will insure that a secure object’s
private information is not available to other software.

The parent application described one method for protect-
ing information while it is in the caches. The current
application describes another mechanism that allows all the
data in the cache(s) to be in the clear without having to erase
in-the-clear cache data when the CPU switches to another
thread or process. It also supports architectures having one
or more caches that are shared by multiple CPUs.

For example and referring again to FIG. 1, the present
invention extends the capabilities of the secure object into
architectures that potentially permit sharing of one or more
levels of cache between processors in a multiprocessor
system or between threads in a multi-threaded single or
multi processor system. The present invention would also
cover architectures in which the crypto engine 106 is located
outside other cache levels. For example, both caches [.1 and
L2 103,104 shown in FIG. 1 might be inside the crypto
engine 106, and this concept could be extended to even
higher levels of cache such as an L3 cache.

Thus, the present invention provides a mechanism in
which secure data can remain in the clear in the cache(s)
without exposing that data to unrelated threads or processes,
thereby eliminating the necessity to clear the cache(s) of
secure data whenever unrelated software is executed by the
CPU.

This can be done by introducing an object-id 201 for each
secure object and labeling each cache line 202 with the

20

25

40

45

65

4

object-id of the secure object that “owns” the cache line (i.e.
the secure object that loaded the cache line), as exemplarily
shown for the cache 200 in FIG. 2.

A special value, like 0, for example, would be used for
ordinary code that is not part of any secure object. A new
register 304 (see FIG. 3), the object-id register, would store
the object-id of the currently running secure object or 0, if
ordinary, non-secure-object code is running. When the CPU
302 executes an instruction to load a value from memory, the
caches are checked to see if the desired value is already in
the cache. If it is not, the desired value is loaded from
external memory in the usual manner, including the use of
the crypto engine 106 if a secure object is executing, as
described in the above-identified parent application. If the
desired value is in the cache, the object-id label 201 on the
cache line 202 is checked. If the label is 0, indicating that the
cache line is not owned by any secure object, the desired
value is loaded from the cache into the CPU in the usual
manner. But if the label 201 indicates that the cache line is
currently “owned” by a secure object, the object-id 201 of
the cache line is compared to the object-id of the currently
running code, using object-id register 304 (reference FIG.
3). If the two object-id’s match, the value from the cache line
is loaded into the CPU. If they do not match, this is
considered a “cache miss”. The currently running code will
not get access to the unencrypted value in the cache line but,
instead, will load the encrypted value from external memory.
Alternatively, the encrypted data from external memory can
be decrypted using the decryption key of the secure object
making the request.

FIG. 3 shows a computer architecture 300 corresponding
to the architecture 100 of FIG. 1 used to explain the
mechanism of the parent application and can be seen to
differ by the addition of the object id register 304. Other
components are similar to those described previously for
FIG. 1, except that the L1 cache 303 would be modified to
incorporate the object id data field (also referred to herein as
the “owner” of the data in the cache line) and the cache
controller would be modified to execute the method of the
present invention, thereby resulting in a different micropro-
cessor 301 and CPU 302 from those shown in FIG. 1.

FIG. 4 shows another architecture 400 in which L.2 405 is
additionally converted into a cache structure with an object
identification field for each line, and the concept shown in
FIG. 4 could be used to include additional levels of cache
(e.g., L3). This mechanism permits the crypto engine 106 to
be used upon entry at the higher levels of cache, thereby
increasing the efficiency of the data retrieval since secure
data can be securely stored in multiple levels of cache
without having to be repeatedly encrypted/decrypted as the
secure object is intermittently executed by a CPU 402 in the
system.

The configuration 400 of FIG. 4 is particularly useful as
including all levels of cache located on the CPU micropro-
cessor chip, including chips having more than one CPU and
sharing one or more of the on-chip caches, since the crypto
engine will operate only once upon initially retrieving a
secure object from memory and then again as the secure
object is flushed out of the caches back into memory. With
the mechanism of the present invention, the decrypted data
and/or code of a secure object can safely remain in a cache
and can even be moved to different levels of cache even if
the CPU executes a thread or process that is unrelated to the
secure object.

FIG. 5 shows in flowchart format 500 an exemplary
sequence of new steps taken by a cache controller designed
to implement the method of an exemplary embodiment of

US 9,471,513 B2

5

the present invention. In step 502, upon a CPU request for
data in step 501, the cache controller first determines
whether the requested data already resides in cache. If not,
then in step 503, the controller determines whether a secure
object is executing, by checking whether the object-id value
is 0 in CPU register 304/404 (reference FIGS. 3 and 4)
storing the identification of the object currently executing on
the CPU and making the request.

If no secure object is executing and making the request,
in step 504 the data is retrieved from memory and placed in
a cache line and, in step 505, since no secure object is
involved, a “0” is placed in the object-id label of that cache
line, and the data is made available to the CPU in step 506.

If'a secure object is involved in the request, in step 507 the
data is retrieved from memory and decrypted using the key
of the currently executing secure object and placed in a line
of the cache. In step 508 (or concurrently to step 507), the
object-id label value of the currently executing secure object
is stored in the owner field 201 of the cache line, and the
decrypted data is made available to the CPU in step 506.

If the requested data is determined to already reside in
cache (step 502) upon the request in step 501, then in step
509, the object-id label of the requested cache line is
compared with the object-id of the currently running soft-
ware in the object-id register 304/404 in the CPU 302/402,
exemplarily shown in FIGS. 3 and 4. If the comparison 510
determines that the same owner is involved or if the owner
of the cache line is 0, then the data in the cache line is made
available in step 506.

If two different object-id’s are detected in step 510, then
in step 511, the cache controller invalidates the cache line
and, in step 512, retrieves the encrypted version of the
requested data from memory and decrypts the secure object
data using the key of the currently executing secure object,
and the data is made available to the CPU in step 506.

It is noted that, if a first secure object should cause
invalidation of a second secure object’s data, then, should
the second secure object be again executed by the CPU and
request that data, the data will be decrypted and loaded into
the cache a second time.

The page demon is an example of a system program that
reads memory “pages” of other programs, and writes those
pages out to disk. When the page demon attempts to read a
page of a secure object, a portion of that page may be in a
cache and thus “in the clear”. But if it is in the cache, the
page demon will get a cache miss as described above since
the page demon is not the secure object that owns the cache
line and the page demon will read the encrypted value of the
cache line from external memory. As a result, the page
demon will store the encrypted version of a secure object on
disk and the secure object will have the same protection
when it is paged out to disk as it has when it is in memory.

The object-id label on a cache line is also used when a
“dirty” cache line is pushed out to external memory so that
the cache line will be encrypted with the keys of the secure
object that owns the cache line.

Since the object-id register needs to contain the object-id
of the currently running software, the esm instruction (de-
scribed in co-pending patent application Ser. No. 12/492,
738) will load the object-id register with an appropriate
object-id value—which could be obtained from the
decrypted handle described in the co-pending patent appli-
cation. This appropriate object-id value will also be loaded
into the object-id register after a context switch when a
handle is restored to the handle register as discussed in the
co-pending patent application.

10

15

20

25

30

35

40

45

50

55

60

65

6

In another exemplary design, the object-id would be
created dynamically by the CPU hardware as part of the
execution of the esm instruction.

Exemplary Hardware Implementation

FIG. 6 illustrates a typical hardware configuration of an
information handling/computer system 600 that might
implement the invention described above and which pref-
erably has at least one processor or central processing unit
(CPU) 610.

The CPUs 610 are interconnected via a system bus 612 to
a random access memory (RAM) 614, read-only memory
(ROM) 616, input/output (I/O) adapter 618 (for connecting
peripheral devices such as disk units 621 and tape drives 640
to the bus 612), user interface adapter 622 (for connecting a
keyboard 624, mouse 626, speaker 628, microphone 632,
and/or other user interface device to the bus 612), a com-
munication adapter 634 for connecting an information han-
dling system to a data processing network, the Internet, an
Intranet, a personal area network (PAN), etc., and a display
adapter 636 for connecting the bus 612 to a display device
638 and/or printer 639 (e.g., a digital printer or the like).

In accordance with the description above, the hardware of
the present invention includes modifications to the cache
structure that incorporate the owner identification field in
each cache line of each cache that implements the present
invention, along with modifications to the cache controller
that would implement the method described exemplarily in
FIG. 5.

Thus, FIG. 7 shows how a cache controller 700 could
exemplarily be implemented as incorporating concepts of
the present invention. In one exemplary embodiment, the
cache controller 700 could comprise a microprocessor or
microcontroller including a memory device 701 such as a
PROM or ROM that stores the instructions reflecting the
flowchart shown in FIG. 5. The microprocessor 700 also
includes a data port receiving the value of the object-id
register 304/404 of CPU 302/402 via bus 702, as well as a
data port to interact with bus 703 as interface to data in a
memory 105 or higher-level cache, perhaps via crypto
engine 106.

In addition to the hardware/software environment
described above, a different aspect of the invention includes
a computer-implemented method for performing the above
method. As an example, this method may be implemented in
the particular environment discussed above.

Such a method may be implemented, for example, by
operating a computer, as embodied by a digital data pro-
cessing apparatus, to execute a sequence of machine-read-
able instructions. These instructions may reside in various
types of signal-bearing media.

Thus, this aspect of the present invention is directed to a
programmed product, comprising signal-bearing storage
media tangibly embodying a program of machine-readable
instructions executable by a cache controller of a digital data
processor incorporating the CPU 610 and hardware above,
to perform the method of the invention.

This signal-bearing storage media may include, for
example, a RAM contained within the CPU 610 as repre-
sented by the fast-access storage, for example, for purpose
of' downloading those instructions onto a cache controller for
subsequent execution by that controller. Alternatively, the
instructions may be contained in another signal-bearing
storage media, such as a magnetic data storage diskette 800
or optical storage disk 802 (FIG. 8), directly or indirectly
accessible by the CPU 610.

Whether contained in the diskette 800, the disk 802, the
computer/CPU 610, or elsewhere, the instructions may be

US 9,471,513 B2

7

stored on a variety of machine-readable data storage media,
such as DASD storage (e.g., a conventional “hard drive” or
a RAID array), magnetic tape, electronic read-only memory
(e.g., ROM, EPROM, or EEPROM), an optical storage
device (e.g. CD-ROM, WORM, DVD, digital optical tape,
etc.), paper “punch” cards, or other suitable signal-bearing
media including storage devices in transmission devices and
including devices in either digital or analog formats and
devices in communication links and wireless. In an illustra-
tive embodiment of the invention, the machine-readable
instructions may comprise software object code.

While the invention has been described in terms of
exemplary embodiments, those skilled in the art will recog-
nize that the invention can be practiced with modification
within the spirit and scope of the appended claims.

Thus, for example, although FIGS. 1, 3, and 4 exemplarily
show interconnections between the various components,
these interconnections indicate exemplary information
exchanges and the components could actually be intercon-
nected via common buses so that the components are
interconnected via one or more common data and/or control
buses so that various combinations of information intercon-
nection are possible by selectively controlling the input/
output ports of the various components.

Additionally, although the exemplary embodiments refer
to cache levels, such as on-chip caches, it should be clear
that the concepts of the invention extend beyond caches on
the same chip and, indeed, the concepts could even extend
beyond cache levels. That is, the present invention should be
considered as appropriate in any architecture supporting the
secure object concept described in the parent application in
which a crypto engine is used to decrypt data and/or code
when a secure object is retrieved from its encrypted format
from a memory. The mechanism of the present invention
could be used to permit the crypto engine to be located in
different locations of the cache/memory system while main-
taining an efficient and secure environment for the secure
objects while in the decrypted state.

Further, it is noted that, Applicants’ intent is to encompass
equivalents of all claim elements, even if amended later
during prosecution.

Having thus described my invention, what I claim as new
and desire to secure by Letters Patent is as follows:

1. A method that protects a confidentiality and an integrity
of information in a secure object from other software on the
system, said secure object comprising information that is
cryptographically protected from the other software on the
system, said method comprising:

decrypting and integrity-checking information in the

secure object as said information is brought into a
cache from external memory;

encrypting and generating an integrity value as informa-

tion in the secure object moves from the cache to
external memory;

storing an object-id value that identifies a software that is

currently executing in a CPU (Central Processing
Unit), said value having a predetermined standard
value when software that is not a secure object is
executing;

augmenting each block of information in the cache with

an ownership field that is used to store an identification
of the software that owns the information in said each
block;

comparing, when software attempts to access information

in one of said blocks, the object-id of the currently
executing software with a content of the ownership
field of the block being accessed; and

10

15

20

25

30

35

40

45

50

55

60

65

8

allowing access to the block if the object-id of the
currently executing software matches the object-id in
the ownership field of the block, allowing access if the
ownership field of the block is not the object-id of a
secure object, and treating the access as a “cache miss”
otherwise.
2. The method of claim 1, further comprising:
upon loading data into said block in the cache, addition-
ally loading into the ownership field associated with
said block the object-id of the currently executing
software.
3. The method of claim 1, wherein said secure object
comprises a data structure tangibly embodied in a machine-
readable medium and containing encrypted data when said
secure object is stored in an external memory, said encrypted
data being decrypted when information from said secure
object is retrieved from said external memory into said
cache during execution of said secure object by said CPU,
said secure object having one or more structural components
that protect both a confidentiality and an integrity of the
secure object.
4. The method of claim 1, further comprising:
if the ownership field of a cache block does not match the
object-id value of the currently executing software and
the ownership field is not the predetermined standard
value that indicates software that is not a secure object:
invalidating the requested cache block;
retrieving from said external memory data correspond-
ing to said requested block of data;

loading said data into said cache block either without a
decryption of said data, if software that is not a
secure object is executing, or decrypting said
retrieved data using a decryption key of the currently
executing secure object; and

permitting an access to said data in said cache block for
the CPU making the access request.

5. The method of claim 4, as embodied in a set of
instructions tangibly embodied on a non-transitory machine-
readable storage medium.

6. The method of claim 5, wherein said set of instructions
comprises one of:

firmware instructions controlling a cache controller; and

a set of computer instructions tangibly embedded on a
tangible storage medium, in preparation for loading
onto a memory device in a cache controller.

7. The method of claim 1, wherein the access permitted
when the object-id in the ownership field is not that of a
secure object allows a secure object to communicate with
other software.

8. The method of claim 3, wherein a value for an integrity
mechanism is updated when the information of the secure
object is encrypted and returned to said external memory.

9. The method of claim 1, where said cache comprises a
multi-level cache comprising an [.1 cache and an L2 cache.

10. The method of claim 9, wherein said cache further
comprises an 1.3 cache.

11. An apparatus in a processor that protects a confiden-
tiality and an integrity of a secure object, said apparatus
comprising:

a cache including a plurality of blocks of information,
each said block having an owner field identifying an
owner, if any, of data stored in said block; and

a cache controller that allows an access of data stored in
one of said blocks when a value indicative of said
owner identified in said owner field of said block
matches an object identification value of a secure object
making a request and also allows an access when a

US 9,471,513 B2

9

value in said owner field indicates that the data in said
block is not owned by a secure object,

wherein:

information in the secure object is decrypted and integ-
rity-checked as the secure object information is
brought into said cache from an external memory,
and

information in the secure object is encrypted and an
integrity value is generated when information of the
secure object moves from the cache to the external
memory.

12. The apparatus of claim 11, wherein a predetermined
value is used in said owner field if the data stored in said
block is not owned by a secure object.

13. The apparatus of claim 11, wherein values in said
owner field identify a specific secure object associated with
said data, said secure object comprising a data structure
containing at least one of encrypted data and encrypted code
when said secure object is stored in an external memory, said
data being decrypted when said secure object is retrieved
from said external memory into said cache for execution of
said secure object by a central processing unit (CPU) in said
apparatus.

14. The apparatus of claim 13, further comprising:

an object-id register that stores an identification value of

software currently executing on the CPU,

wherein said cache controller, upon an access request for

data in a block of said cache, initially determines
whether a value stored in said owner field of said block
of cache matches a value stored in said object-id
register.

15. The apparatus of claim 14, wherein:

if the value stored in the owner label field matches the

value stored in the object-id register or indicates that no
secured data is stored in the requested cache block, said
cache controller permits access to the data stored in the
requested block of cache, and

if the values fail to match and the value stored in the

owner field indicates secured data, the cache controller
declares a cache miss.

16. The apparatus of claim 15, wherein, if a cache miss is
declared, the cache controller:

invalidates the requested cache block of data;

retrieves from a memory data corresponding to said

requested block of data;

loads said data into said cache block without a decryption

of said data if the software executing is not a secure
object and with a decryption of data if the software
executing is a secure object; and

permits an access to said data for the CPU making the

access request.

17. The apparatus of claim 11, wherein said cache and
said cache controller comprise a cache and cache controller
in a first level of a cache hierarchy on said apparatus, said
cache hierarchy including a second level cache and cache
controller, said second level cache also including a plurality
of blocks of information, each said block having an owner
field identifying an owner, if any, of data stored in said
block, and said second level cache controller controls an
access of said data stored in said block as based upon
whether said access has been made by said owner identified
in said owner identification field or a value in the owner
identification field indicates that non-secured data is stored
in said block.

5

10

15

25

30

35

40

45

55

65

10

18. A cache controller that controls a cache in a system
that protects a confidentiality and an integrity of information
in a Secure Object from other software, said cache controller
comprising:

means for receiving a value when a process or thread

requests an access to data stored in a block in the cache,
said value identifying the process or thread that is
making the request; and

means for causing said cache controller to:

compare the received value with an ownership value
for the block in the cache; and

allow access to contents of the block in the cache if the
object-id of the currently executing software
matches the object-id in an owner field of the block
in the cache, allow access if the owner field is not the
object-id of a secure object, and treat the access as a
“cache miss” otherwise,

wherein:

information in the secure object is decrypted and integ-
rity-checked as the secure object information is
brought into said cache from an external memory,
and

information in the secure object is encrypted and an
integrity value is generated when information of the
secure object moves from the cache to the external
memory.

19. The cache controller of claim 18, wherein, if a cache
miss is declared for a requested block in the cache, said
cache controller:

invalidates the requested block in the cache;

reads data from an external memory;

executes one of the following:

stores the data into said requested block in the cache;
and

decrypts said data using a decryption key of a secure
object making said request identified by the object-id
register and stores the decrypted data into said
requested block in the cache; and

provides access to the data stored in the requested block

in the cache.

20. A method that protects a confidentiality and an integ-
rity of information in a secure object from other software on
the system, said secure object comprising information that is
cryptographically protected from the other software on the
system, said method comprising:

decrypting and integrity-checking information in the

secure object as said information is brought into a
cache from an external memory;

encrypting and generating an integrity value as informa-

tion in the secure object moves from the cache to said
external memory;
using an object-id value that identifies a software that is
currently executing in the CPU, said value having a
predetermined standard value when software that is not
a secure object is executing;

augmenting each entry in the cache with an ownership
field that is used to store an identification of the
software that owns data in said each cache entry;

comparing, when software attempts to access information
in one of said cache entries, the object-id value that
identifies the software that is currently executing with
a content of the ownership field of the cache entry being
accessed; and

allowing access to the contents of the cache entry if the

object-id of the currently executing software matches
the object-id in the ownership field of the cache entry,
allowing access if the ownership field of the cache

US 9,471,513 B2
11

entry is not the object-id of a secure object, and treating
the access as a “cache miss™ otherwise.

#* #* #* #* #*

12

